Какие органы печатают на 3d принтере. Создан первый серийный биопринтер

3D-принтеры сегодня используются во многих сферах нашей жизни, позволяя создавать различные декоративные элементы для интерьера, протезы для органов человека, дизайнерские украшения или даже шоколад. Но наука не стоит на месте, и сегодня уже планируется 3D-печать органов из биологического материала. Это самый настоящий революционный прорыв, поскольку донорские органы – большой дефицит.

Особенности печати органов на 3д-принтере

Создание функционирующих органов человека посредством 3D-печати позволило бы решить самую главную проблему – нехватку этих самых органов, чтобы спасти миллионы пациентов по всему миру. Идея о выращивании человеческих органов возникла еще в прошлом веке, но до момента появления биопечати воплотить их в реальность не представлялось возможным. В Институте регенеративной медицины первыми стали создавать синтетические строительные блоки для выращивания мочевого пузыря человека на основе 3D-печати. Однако первая печать появилась только в 2000-е годы.

Первый 3D-принтер для биопечати: Organovo

Компания Organovo в 2010 году первой запустила печать человеческих органов. Сегодня специалисты компании активно занимаются попытками создать образцы печени, но их пока нельзя использовать для трансплантации. 3д печать органов по степени сложности превышает обычные устройства для трехмерной печати, однако общих черт у этих двух процессов немало:

  • Применяются картриджи и печатающие головки,
  • Вместо чернил используется биоматериал,
  • Формирование органа ведется послойно на специальной рабочей поверхности.

Однако перед печатью каждая деталь проходит ряд проверок. Для начала сам пациент проходит процедуры КТ- сканирования и МРТ. Полученные результаты обрабатываются посредством компьютера, после чего создается макет – именно он используется в принтере, чтобы определить места и способы нанесения клеток. Биологические принтеры работают на основе человеческих клеток того органа, синтез которого проводится, или на основе стволовых клеток. Цельная структура органа получается благодаря специальному скрепляющему веществу, которое имеется в картридже.

Сразу после завершения печати созданный орган помещается в специальные условия в инкубаторе – это необходимо для того, чтобы клетки начали деление и синхронизацию в совместной работе.

В чем проблемы?

Биопринтер для печати человеческих органов Organovo – это современное устройство, за которым большое будущее. Однако имеется ряд проблем, связанных с этим нелегким и трудоемким процессом:

  1. Дефицит материала, который можно было бы использовать для производства человеческих органов.
  2. Сложность и в прорастании клеток вне тела человека: наши органы устроены очень сложно, поэтому наладить работу искусственного органа очень трудно.
  3. Ограниченность технических возможностей. Во-первых, не хватает качественного и мощного оборудования, позволяющего создавать максимально приближенные к натуральным человеческие органы. Во-вторых, очень трудно заставить клетки работать слаженно, поскольку требуется производство еще и кровеносных сосудов – именно они способствуют правильному функционированию органов. Кстати, первые шаблоны кровеносных сосудов уже были произведены в университете Бригама Янга. Для их создания использовался линейный полисахарид агарозы.


Особенности работы биологического 3D-принтера

– процесс непростой, поэтому и само устройство имеет ряд особенностей. Биопринтер хорош тем, что он работает без использования поддерживающей основы. Organovo работает на основе стволовых клеток, которые получают из костного мозга. Именно эти клетки формируются в маленькие капельки диаметров от 100 до 500 микрон, которые хорошо держат форму и позволяют вести качественную печать. Суть этого процесса в следующем: первой печатающей головкой выкладываются капельки с клетками в нужной последовательности, а вторая распыляет поддерживающее основание. В этом качестве используется гидрогель на основе сахарной пудры, который не вступает во взаимодействие с клетками. После завершения печати полученная структура оставляется на пару дней, чтобы произошло сцепление капель друг с другом.

Возможна с применением других материалов и поддерживающих основ. Например, клетки печени можно нанести на заранее подготовленное основание в виде этого органа.

Какие перспективы?

3D-технологии печати сегодня очень популярны, в том числе и в сфере создания человеческих органов. Однако пока печать органов на принтере имеет ряд проблем. Допустим, созданная компанией Organovo печень была полностью идентична человеческой, выполняла все ее функции, однако синтезированный орган смог просуществовать около 40 дней. Не так давно были созданы посредством 3D-печати клапаны сердца, вены, а вот печать полноценного сердца пока невозможна. Сегодня все больше разговоров о создании 3D-почек, которые можно было бы трансплантировать человеку.

Ученые Organovo считают, что создавать органы можно и без поддерживающей структуры, поскольку живые клетки могут самоорганизоваться. При этом они отмечают, что 3D-печать органов имеет четыре уровня сложности:

  1. Самые простые для печати – плоские структуры из одного вида клеток, например, кожа.
  2. Вторые по степени сложности – трубчатые структуры, например, кровеносные сосуды.
  3. На третьем уровне сложности полые органы (мочевой пузырь или желудок).
  4. И самые сложные для печати органы – печень, почки и сердце.

Кроме того, технология 3D-печати органов может применяться и в других сферах. Например, посредством 3D-сканирования можно создавать кости, чтобы вернуть человеку возможность подвижного образа жизни. Биологический принтер позволяет создать структуры, поддерживающие скелет: это способствует быстрому излечению пациентов. На созданных посредством 3D-печати органах можно тестировать лекарства, чтобы выявить их побочные эффекты.

Уменьшенная копия человеческого уха из биогеля

Wake Forest Institute for Regenerative Medicine

Ученые из медицинской школы Уэйк-Форест представили биопринтер, который печатает из живых клеток человеческие ткани, способные сохранять свою форму и приживаться в организме. В перспективе, напечатанные на биопринтере ткани и органы могут заменить искусственные протезы. Работа исследователей опубликована в журнале Nature .

Для создания органов и тканей принтер использует специальный гидрогель и пластиковый биоразлагаемый материал. Гидрогель представляет собой комбинацию из желатина, фибриногена, гиалуроновой кислоты и глицерина с достаточно высокой концентрацией живых клеток. Сначала принтер осторожно слой за слоем создает из него трехмерные объекты, а затем покрывает их внешней оболочкой из разлагаемого полимера. Эта оболочка помогает держать органам и тканям форму.

После того, как ткани пересаживают в организм, полимерная оболочка постепенно разлагается. В то же время клетки начинают самостоятельно выделять матрикс, который обеспечивает механическую поддержку клеток, и, в конечном итоге, необходимость во вспомогательном материале отпадает. Весь объем искусственной ткани пронизывает сеть микроканалов, по которым к клеткам поступают кислород и питательные вещества.

На данный момент ученые создали гелевый аналог кости свода черепа крысы на основе стволовых клеток человека из амниотической жидкости, уменьшенные копии человеческого уха из хондроцитов кролика и несколько «мышц» с использованием мышиного миобласта C2C12. Все образцы исследователи проверили в лабораторных и в естественных условиях, вживив их под кожу крыс и мышей.

Результаты, по мнению ученых, оказались многообещающими. Ушные раковины, подсаженные мышам, спустя два месяца сохранили форму, а также в них на 20 процентов увеличилось содержание гликозоаминогликанов, которые входят в состав клеточного матрикса. Мышечная ткань, вытянутая вдоль опорной конструкции, спустя две недели также сохранила свои механические характеристики. Малоберцовый нерв, вживленный в имплант, также сохранил свою целостность и в ткани наблюдались нервные контакты с α-BTX+ внутри импланта. В гелевом аналоге кости свода черепа у крыс спустя пять месяцев сформировалась васкуляризированная костная ткань.

По словам авторов, теперь необходимо выяснить, насколько безопасны напечатанные на биопринтере импланты для людей. Скорее всего, сначала будут тестироваться хрящевые структуры, то есть ушные раковины, так как в отличие от мышц и костей, хрящу не требуется обширная система кровеносных сосудов.

Идея 3-D печати органов, в целом, не нова. Ученые активно работают над этой технологией, так как она не только позволит создавать биоимпланты для пересадки людям, но и, например, проводить клинические испытания лекарств на отдельных органах и тканях. Так, компания Organavo на данный момент занимается трехмерной печатью почечных тканей для испытаний лекарств.

Кристина Уласович

«Распечатают ли нам, наконец, новые органы?» - этот странный вопрос в наши дни, оказывается, уже витает в воздухе. Так вот, сообщаем: распечатают. Но не сейчас. Не так скоро. Хотя в России уже разрабатываются и биопринтеры, на которых в будущем станут печатать «запчасти» для человека, и биобумага для таких устройств.

Одна из таких отечественных «точек роста» - лаборатория тканевой инженерии Института теоретической и экспериментальной биофизики (ИТЭБ РАН), расположенного в подмосковном наукограде Пущино.

«Кусочки сахара» и челюсть из них

Что же значит термин «тканевая инженерия» и откуда он взялся?

Прежде чем делать с нуля новые почки и сердце (чего мы пока не умеем), медицине предстояло освоить две задачи попроще. Во-первых, научиться воспроизводить твердые ткани – кости. И во-вторых, научиться воссоздавать большие куски тканей для «залатывания» тяжелых травм.

С этим к настоящему моменту дело обстоит довольно неплохо. В обоих случаях применяются «биодеградируемые материалы». Они не остаются в организме навсегда, а составляют основу, заселяя которую, стволовые клетки человека постепенно восстанавливают ткань. При этом сама «заплатка» попросту рассасывается.

Первым делом корреспондентам «МИР 24» показали нечто, похожее на «кусочки сахара» в колбах. Как оказалось, это – запасы материалов или препаратов, из которых формируется заменитель кости у человека. «Белые вещества» могут быть как из натуральной кости, так и из синтетических полимеров, таких как полилактиды и полигликолиды.

Напечатанная под управлением компьютера на 3D–принтере костная ткань по своей структуре может как полностью воссоздавать утраченный фрагмент кости, так и создавать другие конструкции, подходящие для обеспечения процесса ее восстановления.

«Возможности 3D-биопринтинга позволили, например, заместить удаленную из-за раковой опухоли нижнюю челюсть человека, - рассказывает руководитель лаборатории роста клеток и тканей Ирина Селезнева. – Прежде чем ее удалить, сняли томограмму и по компьютерной модели восстановили и напечатали каркас органа, который потом заселили собственными стволовыми клетками пациента и заместили утрату».

С воспроизводством мягких тканей дело обстоит сложнее. Однако за последние десять лет ученые существенно продвинулись и в этом направлении.

Из чего делается «биобумага»

Суть метода «биопечати» в данном случае в том, что будущий орган формируется из двух основных компонентов: живых клеток и «матрикса», моделирующего условия межклеточной среды и соединительной ткани.

Источником клеток могут стать как донорские, так и собственные стволовые клетки человека, выделенные, например, из жира или костного мозга. Они могут быть превращены в различные типы клеток и тканей под воздействием биологически активных веществ.

Руководитель лаборатории тканевой инженерии профессор Владимир Акатов и Ирина Селезнева говорят о создании новых биоактивных материалов, способных активировать собственные регенераторные возможности организма без привнесенных извне клеток. Главное - создать условия для миграции и роста собственных стволовых клеток человека и формирования ими тканей.

«Биобумагой для биопринтера» ученые называют искусственную среду, в которой смогут расти живые клетки будущих органов. Она образуется из белков, полисахаридов и других биоактивных веществ и представляет собой гидрогель, который можно заправлять в биопринтер вместе с клетками, либо тонкую пленку, на которой можно печатать клетки.

«Мы исследуем эти гели при взаимодействии с клетками, - поясняет старший научный сотрудник Галина Давыдова. - Смотрим, как составить композицию, чтобы после полимеризации гидрогель обеспечивал механические характеристики конструкции и условия для жизни в них леток».

Галина Анатольевна набирает в один шприц белок коллаген, а в другую – полисахарид (метилцеллюлозу). И капает из обоих шприцов в чашечку Петри. Происходит реакция, в результате которой в чашечке образуется бесформенная «пенка» или пленка. Бумагу она напоминает весьма относительно – впрочем, что-то вроде кусочка рельефных обоев или линкруста. Это гель «полимеризуется».

Вот прототип той «подложки», куда станут слой за слоем наращивать клетки будущих органов. Она сможет образовывать трехмерные объемные структуры этих органов, а затем, сыграв свою роль, рассосется в организме. Пока ничего сногсшибательного с виду не напоминает.

Бумага нужна всем печатникам

Однако у пущинцев довольно солидные партнеры. «В нашей стране есть два лидера биопринтинга, несколько различающихся по своим подходам и аппаратному обеспечению, - рассказала Ирина Ивановна Селезнева. – Один из них – Владимир Миронов, глава 3D Bioprinting Solutions и профессор в Университете штата Вирджиния».

Технология Миронова похожа на «струйный принтер», когда под управлением компьютера струи из разных шприцов смешиваются, формируя на подложке ткань. «В качестве чернил используются клеточные сфероиды, агрегаты клеток, которые обладают способностью сливаться между собой, образуя те же капилляры и другие структуры, ткани», - отметила Селезнева.

Другой лидер - Борис Чичков, профессор Ганноверского университета им. Лейбница и заведующий лабораторией лазерной наноинженерии в Институте проблем лазерных и информационных технологий РАН в Троицке.

«Условно назовем это лазерный биопринтинг – рассказала Селезнева. - Очень короткие, фемтосекундные импульсы лазера позволяют сшивать материал шаг за шагом, задавая под управлением компьютера нужную форму матрикса с точностью до нанометров. Эти же лазерные импульсы способны переносить с одной поверхности на другую даже отдельные клетки, которые при этом сохраняют свою жизнеспособность ».

Технологии биопечати различаются, но без матрикса, обеспечивающего адекватное микроокружение для жизни клеток и формирования тканей в обоих случаях не обойтись. В Пущино разрабатывают «бумагу», как для струйного, так и для лазерного принтера, адаптируя характеристики гидрогелей к особенностям технологии биопечати.

В принципе, пользуясь методами биопринтинга в отдаленном будущем, возможно, удастся собирать орган, как пазл, из отдельных клеток и матрикса. А в ближайшем будущем напечатанные таким образом кусочки тканей станут новой моделью для тестирования новых лекарств.

Сверхзадача, которую ставят ученые на будущее – научиться наращивать ткани прямо на поврежденном месте. Тогда вместо громоздкого принтера будет использоваться инструмент вроде пистолета, из которого на тело пациента станут наносить элементы гидрогеля с клетками, которые прямо на человеке будут полимеризоваться, формируя новую ткань.

Ученые давным-давно «заболели» идеей о выращивании органов в лабораториях, однако существенных прорывов и достижений в этих исследованиях науке удалось достичь только в конце 90-х годов прошлого века, когда всеобщее внимание привлекла биопечать. Как пишет Engadget, благодарить за это стоит ученых из Института регенеративной медицины Уэйк Форест, первых подавших идею, создавая 3D-напечатанные синтетические строительные блоки, необходимые для выращивания человеческих мочевых пузырей. Как отмечает источник, на самом деле эти ученые не печатали мочевые пузыри. Это произошло только в начале 2000-х годов, когда биоинженер Томас Боланд из Университета Клемсона начал модифицировать обычные чернильные принтеры для возможности использования в них биологических чернил и создания из них трехмерных объектов.

В 2010 году появилась одна из первых в мире компаний, занимающихся биопечатью. Ей стала Organovo. К настоящему моменту Organovo научилась печатать и использует их для проверки новых лекарств и проведения новых исследований. Компания надеется, что в ближайшем будущем ей удастся создать полнофункциональную печень. Она проделала колоссальную работу над достижением этой цели, но пока еще не готова к финальному рывку.

Как это работает?


Здесь следует сразу внести ясность: несмотря на огромное различие в сложности между печатью органов и печатью обычных пластиковых предметов, оба процесса весьма похожи друг на друга. В обоих случаях используются специальные картриджи и печатные головки, которые выстреливают чернила (или биологический материал), накладывая их слой за слоем на платформу. Однако обе системы имеют несколько ключевых различий:

  • Все мы знаем, как выглядит большинство наших органов, однако для возможности их воссоздания ученым необходимо сперва провести на каждом отдельно взятом пациенте КТ-сканирование или МРТ. После чего полученные данные обрабатываются в компьютере, и создается макет, который служит в качестве подсказки, куда и как необходимо слой за слоем наносить клетки.
  • Вместо поливинилхлоридного пластика или металла биопринтеры используют в качестве чернил человеческие клетки того органа, который должен быть произведен. Эти клетки используются со специальным скрепляющим агентом, который позволяет создавать цельную структуру. Помимо использования клеток тех или иных органов, биопринтеры также могут использовать стволовые клетки, биоинженерные материалы (такие, как полимер альгинат, ранее использовавшийся, например, для производства ткани клапанов аорты) и другие субстанции, которые не будут отвергнуты человеческим организмом. Например, в 2012 году на 3D-принтере была создана титановая челюсть, которая впоследствии была успешно имплантирована 83-летней женщине. А с 2013 года в США живет мужчина с .
  • После того как ученые печатают образец, его необходимо поместить в специальные инкубационные условия, для того чтобы клетки смогли делиться и работать сообща, как это происходит в случае настоящих живых органов.

И как раз последняя часть процесса является в большей степени причиной того, почему мы до сих пор не видим в наших больницах машин, производящих человеческие органы на замену.

В чем же проблема?

Согласно доктору Энтони Атале (руководителю группы ученых из Уэйк Форест, занимавшихся производством мочевых пузырей), проблема заключается сразу в нескольких аспектах. Первый аспект заключается в сложности поиска тех материалов, которые можно использовать для производства частей тела и заставить их впоследствии правильно расти вне тела. Вы не можете просто взять и пришить человеку только что напечатанный орган. Как уже говорилось выше, настоящие органы — это невероятно сложные механизмы. И если мы просто заставим клетки напечатанных копий этих органов делиться, то это совсем не означает, что эти клетки будут работать как и положено. Проблему комментирует биоинженер из Корнелльского университета Ход Липсон:

«Вы, конечно, можете просто правильно и в нужном месте соединить клетки сердечной ткани вместе, но где будет находиться кнопка для их включения? Сама магия заключается в печатном процессе».

Липсон также указывает, что до сих пор нет достаточно мощного программного обеспечения, которое бы подошло для создания идеальных и максимально точных моделей органов. А ведь этот этап является наиболее важным перед тем, как ученые будут приступать непосредственно к самой печати.

Помимо трудностей в создании 3D-печатных органов, чьи клетки вели бы себя как настоящие, ученые столкнулись с трудностью в воспроизводстве кровеносных сосудов. Органам нужны артерии, вены и капилляры для того, чтобы перегонять через себя кровь и доставлять питательные вещества, которые позволяют им оставаться живыми и здоровыми. Однако ввиду своей длины, толщины и формы все эти вещи очень сложно печатать.

Тем не менее никто не говорит, что ученые не стараются решить эту проблему. В этом июне, например, команда исследователей из Университета Бригама Янга использовала линейный полисахарид агарозу для производства шаблона кровеносных сосудов. Ученые из Института Фраухофера также ведут исследования в этом направлении с 2011 года. Гарвардский профессор Дженнифер Льюис занимается вопросом печати органов, которые уже бы имели специальные каналы для передвижения по ним крови и питательных веществ.

Будущее 3D-печати органов


За все время работы над этими вопросами наука все-таки смогла добиться хотя бы частичного успеха в печати органов. Частичного, потому что большинство из полученных органов оказались нефункциональными или смогли жить в течение всего нескольких дней. Например, та же компания Organovo создала миниатюрную человеческую печень, которая на самом деле могла работать как настоящая, за исключением одной проблемы — работать она могла не дольше 40 дней. Или взять ученых из , которые успешно напечатали клапаны сердца и меленькие вены в апреле этого года. Ученые этого учреждения надеются однажды создать полноценное функционирующее сердце. Не будем забывать и о биоинженерах из , создавших искусственное (отлично работающее, кстати) человеческое ухо из живых клеток и специального геля.

Со слов Аталы, примерно 90 процентов пациентов в списке ожидающих пересадки органов стоят в очереди на новые почки. Возможно, эта невеселая статистика еще сильнее стимулировала и подтолкнула китайских ученых на разработку маленьких напечатанных почек, но которые, к сожалению, могут оставаться живыми и работоспособными только в течение четырех месяцев. Атала тоже занимается поиском способов, которые позволили бы печатать почки на 3D-принтерах. В одном из своих последних публичных выступлений на медицинской и технологической конференции TED он даже показал неработающую модель этого воссозданного органа (посмотреть можно будет на видео ниже).

Во время этой же презентации Атала поделился историей об одной операции по пересадке выращенного в лабораторных условиях мочевого пузыря. Он рассказал о будущем медицины, где специальные сканеры будут изучать глубину и сложность травм, а затем печатать новую ткань прямо на пациенте. Однако чтобы дожить до этого будущего, в котором не будет нехватки новых органов и любой нуждающийся в них человек сможет себе их позволить, знания о биопечати тканей и органов должны прочно занять свое место в медицинских школах, колледжах, институтах и университетах.

После 10 лет разработок команда биолога Энтони Аталы представила публике Cистему печати встроенной ткани и органов. После окончания всех анализов эти 3D-бионапечатанные структуры будут использоваться для замены поврежденной, больной или мертвой ткани пациентов. А так как они спроектированы на компьютере, то эти заменители будут в точности соответствовать нуждам каждого отдельного пациента. Детали технологии освещены в статье, напечатанной в журнале Nature Biotechnology.

Биопринтеры работают также как обычные 3D-принтеры, но вместо пластика или металлов используют специальные биоматериалы, которые по характеристикам напоминают функционирующую живую ткань. Но до сих пор пор биопринтеры не могли печатать ткани нужных размеров или прочности. Материалы получались слишком слабые и структурно нестабильные для хирургической трансплантации. Также они не могли печатать кровеносные сосуды, а без них новые клетки не могли получать кислород и питательные вещества.

Новый биопринтер преодолел все эти недостатки. Биоразрушаемый полимерный материал используется для создания формы ткани, а гель на основе воды доставляет клетки в структуру (гель не токсичен по отношению к клеткам) Временная внешняя структура помогает поддерживать форму объекта во время процесса печати. А чтобы справиться с ограничениями по размеру, исследователи внедрили в объект специальные микроканалы, которые позволяют доставлять питательные вещества и кислород ко всем клеткам внутри структуры. «По сути мы воссоздали капилляры с помощью этих микроканалов», — %D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%B8%D1%82%20%20%D0%90%D1%82%D0%B0%D0%BB%D0%B0.

%0A

%D0%94%D0%BB%D1%8F%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%B8%20%D1%81%D0%B2%D0%B5%D0%B6%D0%B5%D0%BD%D0%B0%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%BD%D0%BD%D1%8B%D1%85%20%D0%B1%D0%B8%D0%BE%D1%87%D0%B0%D1%81%D1%82%D0%B5%D0%B9%20%D1%83%D1%87%D0%B5%D0%BD%D1%8B%D0%B5%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D0%BB%D0%B8%20%D1%80%D1%8F%D0%B4%20%D1%8D%D0%BA%D1%81%D0%BF%D0%B5%D1%80%D0%B8%D0%BC%D0%B5%D0%BD%D1%82%D0%BE%D0%B2%20%D0%BD%D0%B0%20%D0%B6%D0%B8%D0%B2%D1%8B%D1%85%20%D0%B6%D0%B8%D0%B2%D0%BE%D1%82%D0%BD%D1%8B%D1%85.%20%D0%92%D0%BD%D0%B5%D1%88%D0%BD%D0%B8%D0%B5%20%D1%83%D1%88%D0%B8,%20%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80%D0%BE%D0%BC%20%D1%81%20%D1%87%D0%B5%D0%BB%D0%BE%D0%B2%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5,%20%D0%B1%D1%8B%D0%BB%D0%B8%20%D0%B8%D0%BC%D0%BF%D0%BB%D0%B0%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D1%8B%20%D0%BF%D0%BE%D0%B4%20%D0%BA%D0%BE%D0%B6%D1%83%20%D0%BC%D1%8B%D1%88%D0%B8.%20%D0%A7%D0%B5%D1%80%D0%B5%D0%B7%20%D0%B4%D0%B2%D0%B0%20%D0%BC%D0%B5%D1%81%D1%8F%D1%86%D0%B0%20%D1%83%D1%88%D0%B8%20%D0%BF%D0%BE%E2%80%91%D0%BF%D1%80%D0%B5%D0%B6%D0%BD%D0%B5%D0%BC%D1%83%20%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B8%D0%BB%D0%B8%20%D1%84%D0%BE%D1%80%D0%BC%D1%83,%20%D0%B0%20%D1%82%D0%B0%D0%BA%D0%B6%D0%B5%20%D1%81%D1%84%D0%BE%D1%80%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%D1%81%D1%8C%20%D0%BA%D1%80%D0%BE%D0%B2%D0%B5%D0%BD%D0%BE%D1%81%D0%BD%D1%8B%D0%B5%20%D1%81%D0%BE%D1%81%D1%83%D0%B4%D1%8B%20%D0%B8%20%D1%85%D1%80%D1%8F%D1%89%D0%B5%D0%B2%D0%B0%D1%8F%20%D1%82%D0%BA%D0%B0%D0%BD%D1%8C.%20%D0%9D%D0%B0%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5%20%D0%BC%D1%83%D1%81%D0%BA%D1%83%D0%BB%D1%8B%20%D0%B8%D0%BC%D0%BF%D0%BB%D0%B0%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%20%D0%B2%20%D0%BA%D1%80%D1%8B%D1%81,%20%D0%B8,%20%D0%BA%D0%B0%D0%BA%20%D0%B8%20%D0%B2%20%D1%81%D0%BB%D1%83%D1%87%D0%B0%D0%B5%20%D1%81%20%D1%83%D1%88%D0%B0%D0%BC%D0%B8,%20%D1%8D%D1%82%D0%B8%20%D1%82%D0%BA%D0%B0%D0%BD%D0%B8%20%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B8%D0%BB%D0%B8%20%D1%81%D0%B2%D0%BE%D1%8E%20%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D1%83.

%0A

%D0%A1%D1%82%D0%B2%D0%BE%D0%BB%D0%BE%D0%B2%D1%8B%D0%B5%20%D0%BA%D0%BB%D0%B5%D1%82%D0%BA%D0%B8%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%20%D0%B4%D0%BB%D1%8F%20%D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%BD%D0%B8%D1%8F%20%D1%84%D1%80%D0%B0%D0%B3%D0%BC%D0%B5%D0%BD%D1%82%D0%BE%D0%B2%20%D0%BA%D0%BE%D1%81%D1%82%D0%B5%D0%B9%20%D1%87%D0%B5%D0%BB%D1%8E%D1%81%D1%82%D0%B8,%20%D0%BA%D0%BE%D1%82%D0%BE%D1%80%D1%8B%D0%B5%20%D1%82%D0%B0%D0%BA%D0%B6%D0%B5%20%D0%B8%D0%BC%D0%BF%D0%BB%D0%B0%D0%BD%D1%82%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BB%D0%B8%20%D0%B2%20%D0%BA%D1%80%D1%8B%D1%81.%20%D0%A1%D0%BF%D1%83%D1%81%D1%82%D1%8F%20%D0%BF%D1%8F%D1%82%D1%8C%20%D0%BC%D0%B5%D1%81%D1%8F%D1%86%D0%B5%D0%B2%20%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D1%8B%20%D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%BB%D0%B8%20%D0%BA%D1%80%D0%BE%D0%B2%D0%BE%D1%81%D0%BD%D0%B0%D0%B1%D0%B6%D0%B0%D0%B5%D0%BC%D1%83%D1%8E%20%D0%BA%D0%BE%D1%81%D1%82%D0%BD%D1%83%D1%8E%20%D1%82%D0%BA%D0%B0%D0%BD%D1%8C.

%0A

%D0%90%D1%82%D0%B0%D0%BB%D0%B0%20%D0%B3%D0%BE%D0%B2%D0%BE%D1%80%D0%B8%D1%82,%20%D1%87%D1%82%D0%BE%20%D1%82%D0%B0%D0%BA%D0%B8%D0%B5%20%D0%BD%D0%B0%D0%BF%D0%B5%D1%87%D0%B0%D1%82%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5%20%D1%82%D0%BA%D0%B0%D0%BD%D0%B8%20%D0%B8%D0%BC%D0%B5%D1%8E%D1%82%20%D0%BD%D1%83%D0%B6%D0%BD%D1%8B%D0%B9%20%D1%80%D0%B0%D0%B7%D0%BC%D0%B5%D1%80,%20%D0%BF%D1%80%D0%BE%D1%87%D0%BD%D0%BE%D1%81%D1%82%D1%8C%20%D0%B8%20%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C%20%D0%B4%D0%BB%D1%8F%20%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F%20%D0%B8%D1%85%20%D0%B2%20%D1%87%D0%B5%D0%BB%D0%BE%D0%B2%D0%B5%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%BC%20%D0%BE%D1%80%D0%B3%D0%B0%D0%BD%D0%B8%D0%B7%D0%BC%D0%B5,%20%D0%BF%D1%80%D0%B8%D1%87%D0%B5%D0%BC%20%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0%20%D0%BC%D0%BE%D0%B6%D0%B5%D1%82%20%D1%81%D0%BE%D0%B7%D0%B4%D0%B0%D0%B2%D0%B0%D1%82%D1%8C%20%D1%82%D0%BA%D0%B0%D0%BD%D0%B8%20%D0%B1%D1%83%D0%BA%D0%B2%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%20%D0%BB%D1%8E%D0%B1%D1%8B%D1%85%20%D1%84%D0%BE%D1%80%D0%BC.%20%D0%A1%D0%B5%D0%B9%D1%87%D0%B0%D1%81%20%D1%83%D1%87%D0%B5%D0%BD%D1%8B%D0%B5%20%D0%B7%D0%B0%D0%BD%D0%B8%D0%BC%D0%B0%D1%8E%D1%82%D1%81%D1%8F%20%D0%BF%D1%80%D0%BE%D0%B2%D0%B5%D1%80%D0%BA%D0%BE%D0%B9%20%D0%B1%D0%B5%D0%B7%D0%BE%D0%BF%D0%B0%D1%81%D0%BD%D0%BE%D1%81%D1%82%D0%B8%20%D1%81%D0%B2%D0%BE%D0%B5%D0%B3%D0%BE%20%D0%B8%D0%B7%D0%BE%D0%B1%D1%80%D0%B5%D1%82%D0%B5%D0%BD%D0%B8%D1%8F,%20%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%20%D1%87%D0%B5%D0%B3%D0%BE%20%D0%BC%D0%BE%D0%B6%D0%BD%D0%BE%20%D0%B1%D1%83%D0%B4%D0%B5%D1%82%20%D0%BF%D0%B5%D1%80%D0%B5%D1%85%D0%BE%D0%B4%D0%B8%D1%82%D1%8C%20%D0%BA%20%D0%B8%D1%81%D0%BF%D1%8B%D1%82%D0%B0%D0%BD%D0%B8%D1%8F%D0%BC%20%D0%BD%D0%B0%20%D0%BB%D1%8E%D0%B4%D1%8F%D1%85.">